

THE CAMFORD INTERNATIONAL SCHOOL ANNUAL LESSON PLAN 2025-26

SUBJECT : PHYSICS XII

MONTH	CHAPTER	DETAIL CONCEPTS TO BE COVERED	PRACTICALS
MARCH	Chapter–1: Electric Charges and Fields	Electric charges, Conservation of charge, Coulomb's law-force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in uniform electric field.	
	Chapter–1: Electric Charges and Fields	Electric flux, statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside).	
APRIL	Chapter–2: Electrostatic Potential and Capacitance	Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; Equipotential surfaces, electrical potential energy of a system of two-point charges and of electric dipole in an electrostatic field.	

		Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarization, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor (no derivation, formulae	
		only).	
MAY	Chapter–3: Current Electricity	Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity, temperature dependence of resistance, Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel, Kirchhoff's rules, Wheatstone bridge.	
JUNE	Chapter–4: Moving Charges and Magnetism	Concept of magnetic field, Oersted's experiment. Biot - Savart law and its application to current carrying circular loop. Ampere's law and its applications to infinitely long straight wire. Straight solenoid (only qualitative treatment), force on a moving charge in uniform magnetic and electric fields. Force on a current-carrying conductor in a uniform	EXP-1: To determine resistivity of two / three wires by plotting a graph for potential difference versus current.

	magnetic field, force between two parallel current- carrying conductors-definition of ampere, torque experienced by a current loop in uniform magnetic field; Current loop as a magnetic dipole and its magnetic dipole moment, Moving coil galvanometer its current sensitivity and conversion to ammeter and voltmeter.	
Chapter–5: Magnetism and Matter	Bar magnet, bar magnet as an equivalent solenoid (qualitative treatment only), magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis (qualitative treatment only), torque on a magnetic dipole (bar magnet) in a uniform magnetic field (qualitative treatment only), magnetic field lines. Magnetic properties of materials- Para-, dia- and ferro - magnetic substances with examples, Magnetization of materials, effect of temperature on magnetic properties.	

	Chapter–6: Electromagnetic Induction	Electromagnetic induction; Faraday's laws, induced EMF and current; Lenz's Law, Self and mutual induction.	EXP-2: To find resistance of a given wire / standard resistor using metre bridge.
JULY	Chapter–7: Alternating Current	Alternating currents, peak and RMS value of alternating current/voltage; reactance and impedance; LCR series circuit (phasors only), resonance, power in AC circuits, power factor, wattles current. AC generator, Transformer.	EXP-3: To verify the laws of combination (series) of resistances using a metre bridge. OR To verify the laws of combination (parallel) of resistances using a metre bridge

	Chapter–8: Electromagnetic Waves	Basic idea of displacement current, Electromagnetic waves, their characteristics, their transverse nature (qualitative idea only). Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma rays) including elementary facts about their uses.	EXP-4: To determine resistance of a galvanometer by half- deflection method and to find its figure of merit.
AUGUST	Chapter–9: Ray Optics and Optical Instruments	 Ray Optics: Reflection of light, spherical mirrors, mirror formula, refraction of light, total internal reflection and optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lens maker's formula, magnification, power of a lens, combination of thin lenses in contact, refraction of light through a prism. Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers. 	EXP-5: To find the value of v for different values of u in case of a concave mirror and to find the focal length.

	Chapter–10: Wave Optics	Wave optics: Wave front and Huygen's principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygen's principle. Interference, Young's double slit experiment and expression for fringe width (No derivation final expression only), coherent sources and sustained interference of light, diffraction due to a single slit, width of central maxima (qualitative treatment only).	EXP-6: To find the focal length of a convex lens by plotting graphs between u and v or between 1/u and 1/v.
SEPTEMBER	Chapter–11: Dual Nature of Radiation and Matter	Dual nature of radiation, Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light. Experimental study of photoelectric effect Matter waves-wave nature of particles, de-Broglie relation.	EXP-7: To determine angle of minimum deviation for a given prism by plotting a graph between angle of incidence and angle of deviation.
	Chapter–12: Atoms	Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model of hydrogen atom, Expression for radius of nth possible orbit, velocity and energy of electron in his orbit, of hydrogen line spectra (qualitative treatment only).	

Chapter–13: Nuclei	Composition and size of nucleus, nuclear force Mass- energy relation, mass defect; binding energy per nucleon and its variation with mass number; nuclear fission, nuclear fusion.	
Chapter–14: Semiconductor Electronics: Materials, Devices and Simple Circuits	Energy bands in conductors, semiconductors and insulators (qualitative ideas only) Intrinsic and extrinsic semiconductors- p and n type, p-n junction Semiconductor diode - I-V characteristics in forward and reverse bias, application of junction diode -diode as a rectifier.	EXP-8: To draw the I-V characteristic curve for a p-n junction diode in forward and reverse bias.